[Skip to Content]

Scatter Removal Grids

在投影摄影中,防散射网格通过传输大部分主辐射和选择性地抑制散射辐射,对提高成像质量起着重要作用. 该装置由一系列薄铅条组成,这些细铅条由辐射透光的间隙隔开,其形状因素与探测器尺寸相匹配. 大多数网格在一个方向上具有线性几何形状(通常沿着探测器的长轴)。. Parallel grids have lead strips that are focused to infinity (i.e. the primary x-rays have a parallel trajectory). 聚焦网格的铅条在中心方向平行(沿着x射线中心轴),并逐渐向外围倾斜,以匹配从焦点点发散出来的光束 .to the detector at a specific source to detector distance.

抗散射网格通常由沿一维方向的铅条制造,由低衰减的空间材料(如碳纤维或铝)分隔. For specialized applications, there are cross-hatched grids (lead strips in both directions, 相互垂直)用于专门的应用,如专门的胸部成像, 在乳房x线照相术中,一种由铜制成的带有空气间隙的“细胞”网格设计被一家制造商用于临床. 通过选择性地允许主x射线被传输,散射x射线被网格吸收, image contrast is significantly enhanced; 然而, 栅格衰减了直接入射到铅带上的一些期望的初级x射线,并允许传输一些散射角较小的散射辐射光子, or scatter in a direction parallel to the lead strips, 或者是多次散射,从病人的角度出发,可以通过网格传播.

网格的主要特征是网格比、网格频率和焦距. 的 网格比 is a measure of the height of the lead strip to the interspace distance, and is a good measure of the selectivity of primary to scatter transmission. 在一般情况下, a grid with a higher 网格比 will reject scatter better than a lower 网格比, due to the limited angle that is allowed by the grid structure. 然而, 更高比例的栅格通常会带来更高的剂量损失(对于屏幕胶片成像,这被称为“巴基系数”,它表示当胶片光密度匹配时,使用栅格与不使用栅格相比,对患者的剂量增加)。. With digital imaging, there is also a dose penalty when using a grid is used, 基准是信噪比(而不是薄膜光密度). 的 grid frequency 是单位距离(英寸或厘米)的网格线数的度量。, 并且在40 - 50线/厘米(100-120线/英寸)的范围内用于低频网格, 50-60 lines/cm (120 - 150 lines/inch) for medium frequency grids, and 60 - 70+ lines/cm (150-170+ lines/inch). 低频栅格与具有移动栅格组件(称为巴基装置)的系统一起使用,该组件在曝光期间振荡以模糊栅格线. 中频和高频栅格通常与固定栅格支架一起使用.g., portable radiography and many digital radiography systems). 高频网格的使用对于数字射线照相系统来说特别重要,它可以避免由于高频模式采样不足而产生的混叠伪影(参见射线照相伪影一节),这些伪影在输出信号中被解释为低频(混叠)信号. 网格 focal distance 是由从网格中心到外围逐渐增加的铅条几何形状的角度决定的吗, to account for the diverging primary x-ray beam emanating from the focal spot. Typical focal distances are 100 cm (40 inches) and 180 cm (72 inches), although there are many specialized grid focal distances. 焦范围 是一个指标的灵活性,网格定位距离焦点的距离, and is a function of the 网格比 and frequency. General purpose grids for portable radiography have a fairly large range (e.g., 80 to 130 cm) while special purpose grids have a much narrower focal range. Grid artifacts arise from improper positioning of the grid device, 例如,将栅格倾斜到与入射x射线光束不垂直的方向, not centering the grid to the x-ray beam central axis, using a focused grid outside the specified focal range, 将网格颠倒放置(汇聚几何与焦点相反).

膝关节幻相AP投影的两幅图像是在桌面上(左)和使用散射去除网格(Bucky)(右)在60 kV下获得的。. 的 final S numbers of both images were ~350, 表明在计算机x线摄影成像板上有~6 uGy (0.6 mR) in both cases. 的 table top image on the left, 然而, required a technique of 3 mAs whereas the one on the right required 10 mAs, 因为散射去除网格去除了大部分从幻影中出现的散射光子. 的 Bucky factor is thus 3.3 (i.e., 10 ma /3 ma), 这是使用散射去除网格后患者剂量增加的定量测量. 请注意,通过去除大部分散射辐射,图像质量得到了改善.

在桌面(左)75kv下,使用散射去除网格(i.e., Bucky) (right). 的 final S numbers of both images were ~100, 在这两种情况下,在计算机x线摄影成像板上显示约20 uGy (2 mR)的空气空洞事件. 的 table top image on the left, 然而, required a technique of 4 mAs whereas the one on the right required 20 mAs, 因为散射去除网格去除了大部分从幻影中出现的散射光子. 的 Bucky factor is thus 5 (i.e., 20 ma /4 ma), 这是使用散射去除网格后患者剂量增加的定量测量. 请注意,通过去除大部分散射辐射,图像质量得到了显著提高, and well worth the "cost" in additional radiation dose to the patient.

在桌面(左)和散射去除网格(Bucky)(右)获得75 kV时骨盆幻相的两张AP投影图像。. 的 final S numbers of both images were ~240, 表明在计算机x线摄影成像板上有~ 8ugy (0.8 mR) in both cases. 的 table top image on the left, 然而, required a technique of 3 mAs whereas the one on the right required 25 mAs, 因为散射去除网格去除了大部分从幻影中出现的散射光子. 的 Bucky factor is thus 8 (i.e., 25ma / 3ma), 这是使用散射去除网格后患者剂量增加的定量测量. 请注意,通过去除大部分散射辐射,图像质量得到了显著提高, and well worth the "cost" in additional radiation dose to the patient.

Also note that the Bucky factor for the abdomen is substantially higher than those for the knee and the skull radiographs; 的 reason for this is that scatter is reduced with decreasing kV, 以及在主要通过光电效应进行相互作用的骨骼结构成像时(康普顿散射在软组织结构的x线片中占主导地位).